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Abstract. Providing efficient multi-dimensional indexing is critically
important to improve the overall performance of the cloud storage sys-
tem. To achieve efficient querying service, the indexing scheme should
guarantee lower routing cost and less false positive. In this paper, we pro-
pose RB-Index, a distributed multi-dimensional indexing scheme in mod-
ular data centers with Bcube topology. RB-Index is a two-layer indexing
scheme, which integrates Bcube-based routing protocol and R-tree-based
indexing technology. In its lower layer, each server in the network indexes
the local data with R-tree, while in the upper layer the global index is
distributed across different servers in the network. Based on the charac-
teristics of Bcube, we build several indexing spaces and propose the way
to map servers into the indexing spaces. The dimension of these indexing
spaces are dynamically selected according to both the data distribution
and the query habit. Index construction and query algorithms are also
introduced. We simulate a three-level Bcube to evaluate the efficiency
of our indexing scheme and compare the performance of RB-Index with
RT-CAN, a similar design in P2P network.

Keywords: Multi-dimensional data · Distributed index · Modular data
center

1 Introduction

Recent years have witnessed an increasing need of cloud storage systems due
to the emergence of modern data-intensive applications. Various cloud storage
systems are put forward to meet requirements like scalability, manageability
and low latency. Examples of such systems include BigTable [4], DynamoDB [6],
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Cassandra [9], HyperDex [11], etc. One of the requirements of these systems
is to support large-scale analytical jobs and high concurrent OLTP queries. To
achieve this, many works [1,5,7,12–14,16] have been devoted to designing a new
indexing scheme and data management system. A typical indexing scheme is RT-
CAN [7]. RT-CAN is a two-layer indexing scheme integrating R-tree structure
and CAN-based routing protocol. Its higher-layer index, called global index, is
built upon the local index. In RT-CAN, each server in the network builds an
R-tree as the local index, then selects a set of R-tree nodes and publishes them
into the global index. At the same time, a multi-dimensional indexing space is
constructed. Each server in the network maintains a zone and stores the global
index in its responsible zone. Consequently, the global index, composed of R-tree
nodes from different servers, works as an overview index and is distributed across
servers. When a query is given, we first check the global index to determine which
servers may contain the required data and then search the local R-trees on the
related servers to get the result.

The design of the distributed two-layer index makes RT-CAN efficient and
robust, however, like most of other works, RT-CAN is conducted in P2P network,
rather than in data centers. Unlike the P2P network, of which nodes may scatter
widely in the real world and the latency among nodes may vary greatly, the data
center interconnects a great number of servers via a specific Data Center Network
(DCN) and reaches high-reliability, scalability and regularity in its structure. A
specific type of data center is Modular Data Center (MDC) [8,18,19], in which
thousands of servers are interconnected via switches and then packed into a 20-
or 40-feet shipping container. It can be rapidly employed anywhere to meet dif-
ferent requirements of applications. As the MDC gains its popularity, it brings
new challenges for researchers to design a new efficient indexing scheme to sup-
port query processing for it. There are two main challenges. First, the indexing
scheme should utilize the MDC’s architecture topology to improve the perfor-
mance. Second, since in modern data-intensive applications, multi-dimensional
data are commonly processed, like photos, videos, etc., the indexing scheme
should support multi-dimensional indexing. Although RT-CAN supports multi-
dimensional data indexing, it requires that the dimension of stored data cannot
surpass the dimension of the overlay network, which means that RT-CAN is
not scalable in terms of data dimension. Therefore, to index higher-dimensional
data, the original overlay network should be expanded and more servers should
be added to build the index, which costs a lot. Moreover, the high-dimensional
space is usually sparse. Directly building a high-dimensional indexing space is
not efficient.

In this paper, we try to transplant the two-layer indexing scheme on MDC
and the new indexing scheme should be scalable in terms of dimension. We
present our RB-Index, a distributed indexing scheme for multi-dimensional
query processing in MDC with Bcube [2] topology. Bcube is a server-centric
architecture for MDC. Lots of mini-switches and links are used to form its
hyperspace-liked network structure, which results in some attracting features
like low-diameter, high-bandwidth and fault tolerance. In RB-Index, we adopt
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R-tree as the local index. For the global index, instead of setting up one indexing
space, we set up several distinct indexing spaces based on the feature of Bcube
topology and build different global index for each space. The dimension of these
global index is selected according to both data distribution and query habit. We
design the rule to map servers into indexing spaces and publish R-tree nodes
into the global index. A cost model is proposed to select the least-cost set of
R-tree nodes to publish. We also discuss the query processing algorithms. In the
end, we simulate a three-level Bcube and compare the performance of RB-Index
with RT-CAN.

The contribution of this paper is threefold: (1) A multi-dimensional indexing
scheme is proposed for MDC with Bcube topology. We design a strategy to
build several indexing spaces, on which different global indexes with different
dimension are set up. (2) We propose the rule to select the indexed dimension
according to both the data distribution and query habit. The indexed dimension
can be replaced along with the change of query habit, so theoretically RB-Index
can support any-dimensional data indexing. (3) We simulate a three-level Bcube
and evaluate the efficiency of RB-Index.

The rest of paper is organized as follows. Section 2 discusses the related work.
Section 3 gives an overview of RB-Index. Section 4 introduces the global index
construction, including the dimension selection, mapping scheme and the cost
model. In Sect. 5, we present the query algorithms including point query, range
query and KNN query. Section 6 illustrates the simulation and proves the effi-
ciency of our indexing scheme. Finally, Sect. 7 gives the conclusion.

2 Related Work

Efficient indexing scheme is crucial for fast data retrieval in cloud infrastruc-
tures. Due to the unprecedented scale of data, extending the traditional index-
ing technologies, like B-tree and R-tree, has drawn the attention in distributed
environment. One part of these efforts can be classified as the primary index.
The primary index usually adopts key-value based indexing strategies. Given a
key, the index will efficiently locate the objects linked with the key by utilizing
a range index like a distributed B+-tree [10] or by a multidimensional index
like SD-Rtree [3]. However, these indexes do not support query on other data
attributes. In real world, data like videos and photos usually have more than
one keys. Therefore, supporting efficient secondary index becomes a very useful
feature for many applications.

To handle these application cases, a new indexing scheme with two-layer
structure, called RT-CAN, was proposed in [7]. In RT-CAN, servers are organized
into an overlay network and the overlay network forms the global indexing space.
The dimension of the overlay network is determined by data dimension, so after
the data being mapped into the indexing space, every data attribute can be
queried with the index. There are also some similar designs in [12,13]. All of
these works are implemented in P2P network, until recently, several research
work [5,14,16] implemented such a design in data centers. One problem of these
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Fig. 1. A Bcube2 with n=4 (left) is constructed from 4 Bcube1 (right) and 16 4-port
switches.

works is that the index is not scalable with respect to dimension. Take RT-
CAN as an example, the scale of the overlay network determines the query
efficiency under different number of dimension. When the dimension of stored
data increases, the overlay network should also be extended and more server
nodes should be added to guarantee the efficiency. Thus, this introduces great
cost, especially in data centers where the physical layout and scale is usually
fixed.

To address this problem, we want to build a scalable two-layer indexing
scheme. Our index is designed for MDC. The scale of MDC is usually limited with
the size of a shipping container. This property pushes such problem of dimension-
scalability into an extreme condition and solving this problem becomes urgent
and significant.

The Modular Data Center is proposed to meet the growing flexibility of
customers. Many companies has already deployed the MDCs. Sun first presented
an MDC in 2006 with up to 2240 servers and 3PB storage. Later, HP and IBM
employed their own MDCs. The design of the MDC architecture is driven by
application needs. A typical architecture is called Bcube [2].

Bcube is a server-oriented network for container-based, MDCs. By using
much mini-switches and links, Bcube accelerates one-to-x traffic and provides
high network capacity for all-to-all traffic. The construction is recursively-
defined. Bcube0 is the smallest module that consists of n servers connecting to
an n-port switch. A high-level Bcubek employs Bcubek−1 as a unit cluster and
connects n such clusters with nk n-port switches. Figure 1 illustrates an example
of Bcube2 with n = 4, which consists of 64 servers. The servers and switches are
labeled in a string: akak−1 . . . a0(ai ∈ [0, n − 1], i ∈ [0, k]), where ai represents
port number of the switch in the ith level to which the server connected.

3 System Overview

In this section, we first define the indexing space for Bcubek. Then we design the
rule to mapping servers in the Bcubek into its corresponding indexing space and
assign the potential index range. Finally, we give an overview of the RB-Index.
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3.1 Indexing Space

As is mentioned, Bcube is a recursively defined structure and a Bcubek is con-
structed by n Bcubek−1s. This property guarantees that a Bcubek contains nk

Bcube0s and nk+1 servers. To efficiently index multi-dimensional data, we con-
struct a (k + 1)-dimension indexing space for a Bcubek. All the data mapped
into the space is normalized, so the range on each dimension is the same and
the indexing space is actually a hyperspace. We set the dimension of the index-
ing space to the level of Bcubek, hoping that the servers in the network can be
mapped into the indexing space uniformly and each one can take the responsi-
bility for the indexes in a specific zone. We will talk about the mapping scheme
later and here we want to give a closer view of the indexing space by sharing an
example.

Fig. 2. The structure of indexing space for Bcube2 with n=4.

Figure 2 gives an example of the indexing space for Bcube2. Since the level
of Bcube2 is three, the indexing space is a cube. Here n = 4, so four Bcube1s are
arranged along with z-coordinate to form the cube, while each Bcube1 contains
four Bcube0s. The servers in Bcube0 are arranged along with x-coordinate. The
construction of a higher dimension indexing space takes the similar way. First, n
servers in each Bcube0 are placed uniformly along with the first dimension, then
the process continues iteratively until finally n Bcubek−1 are arranged uniformly
along with the (k + 1)th dimension.

Through this construction, the indexing space has some features. Referring
to Bcube’s label pattern, we know if two servers’ labels have exactly one digit
difference, then these two servers are adjacent and the path length is one. More
generally, the path length between any two servers is not longer than k + 1.
Taking the indexing space in Fig. 2 as an example, the path length of any two
servers, which are in line with the same coordinate, is one; the path length of
any two servers on a plane, which is parallel to a coordinate plane, is not longer
than two.
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3.2 Mapping Scheme and Potential Index Range

Previously, we introduced the indexing space for Bcubek. We set the dimension
of the indexing space to the level of Bcubek, so all nk+1 servers in the network
can be mapped uniformly into the indexing space. Each server will hold a zone
in the indexing space and take the responsibility for the indexes in that zone.
We call that zone the potential index range. When building the global index,
each server selects a set of R-tree nodes from its local R-tree, then these R-tree
nodes will be published to the servers of which potential index range intersects
with the node range. Here, we introduce the rule to allocate the potential index
range to each server.

Suppose the indexing space is bounded by B=(B0, B1 . . . Bk), where Bi is
[li, li + γ], i ∈ [0, k], γ ∈ R

+, the potential range of server t is pir(t). Here, we
denote a server t with a label string akak−1 . . . a0 (ai ∈ [0, n − 1], i ∈ [0, k]).
Equivalently, t equals to

∑k
i=0 ain

i. Then pir(t) can be calculated by the follow-
ing function.

pir(t) = pir(akak−1 . . . a0)

= ([l0 + a0
γ

n
, l0 + (a0 + 1)

γ

n
], . . . , [lk + ak

γ

n
, lk + (ak + 1)

γ

n
]).

(1)

A close observation reveals that in Bcubek, the labels of servers in the same
Bcube0 only have the first bit, a0, different. According to Eq. (1), these servers
will be arranged along with the first coordinate. Figure 3 presents the arrange-
ment of servers in the 3D space. We assume that l0, l1 and l2 all equal to
zero. Each of four Bcube1s has 16 servers which are placed in a plain paral-
lel to the xy-coordinate plain. Every server occupies a 3D zone. For example,
pir(000) = ([0, 1

4 ], [0, 1
4 ], [0, 1

4 ]), while pir(133) = ([34 , 1], [34 , 1], [0, 1
4 ])

3.3 Two-Layer Index Architecture

In a distributed storage system, data are randomly distributed over servers.
Each server builds a local R-tree for local data retrieval. When given a query,
instead of searching all the local R-trees, the global index is given to guide the
query to the related servers, which significantly reduces the query region. One

Fig. 3. Potential index range of servers
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way to achieve this goal is to build a centralized global index. Queries are first
sent to several master servers which possess the global index, then, according to
the results, they are broadcast to the related servers for local queries. However,
this strategy may face problems when the number of queries increases. Several
master servers will be the bottleneck of the query performance. An alternative
is to distribute global indexes to all servers and each server is responsible for a
portion of global index in its potential index range. By balancing the workload,
the performance of query is guaranteed. However, both of the indexing schemes
require that the dimension of the indexed data cannot surpass the dimension of
the indexing space. Therefore, to index the high-dimensional data, we need to
build a high-dimensional indexing space. In this paper, we propose RB-Index,
which is a distributed two-layer indexing scheme supporting scalability in terms
of data dimension.

Previously, we have introduced the indexing space formed by Bcubek and the
dimension of the space is limited to k+1. Usually, k is not a big number and the
dimension of data may be far more than k+1. If we try to reduce the dimension
of data and map them to a low-dimensional indexing space, when users query
on some unindexed dimension, all the servers need to be searched to get the
result. In RB-index, rather than building only one global indexing space, we
build n+1 indexing spaces, containing one (k +1)-dimension indexing space for
Bcubek and n k-dimension indexing spaces for n Bcubek−1s. The global indexes
built in these indexing spaces are classified into two types, the main global
index and the subsidiary global index. The main global index is the index in
the (k + 1)-indexing space. Among all the global indexes, the main global index
has the highest dimension, k + 1, and is distributed across all the servers in
the network. The subsidiary index is built in the k-dimension indexing space. In
each of n Bcubek−1s in Bcubek, we build a subsidiary index, which is distributed
only across servers in that Bcubek−1. Therefore, there are n subsidiary global
indexes in all. Each server t in the network is mapped into exactly two indexing
spaces and responsible for two potential index ranges, pir(t) for main global
index and pir′(t) for subsidiary global index. Theoretically, each time RB-Index
can support ((n + 1)k + 1)-dimension indexing. If the data dimension is less
than ((n + 1)k + 1), extra zero vector can be appended to the data. If the data
dimension exceeds ((n + 1)k + 1), we first pick ((n + 1)k + 1) dimensions from
data and gradually rebuild the subsidiary indexes according to the query habit
by replacing the indexed dimension.

For clarity, we summarize symbols with their meaning in Table 1. Some of
them will be used in the description of the rest of this paper.

4 Index Construction

In this section, we first introduce the adaptive rule to determine the dimension
of the indexing space, then we present the way to publish the R-tree nodes into
the indexing space. Finally, a cost model is introduced to select a proper set of
R-tree nodes from a local R-tree.
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Table 1. Symbol description

Sym Description Sym Description

t Code for servers k The level of Bcube

Nt t’s R-tree node set for publishing n Number of switch ports

pir(t) t’s potential index range in main
global index

pir′(t) t’s potential index range in
subsidiary global index

4.1 Dimension Selection

RB-Index builds several indexing spaces to support high-dimensional data index-
ing. The dimension of these indexing spaces need to be selected properly to face
all kinds of query. An adaptive method is to select the dimension according to
the query habit. It is common that during a certain period of time, users may
tend to query on some certain combinations of the dimension. We build the index
for them. Once the query habit changes, we first judge whether the new query
habit exists, then we rebuild the indexing space based on the new query habit.
There is no denying that rebuilding the indexing space will introduce a great
cost, however, the primary aspect we consider here is that the gained efficiency
should surpass the cost. In RB-Index, the dimension of the main global index is
fixed once being established, while the dimension of the subsidiary global index
will be replaced along with the change of query habit.

As is mentioned, the main global index has k+1 dimension and is distributed
across all the servers in the network. We want to distribute the main global
indexes as uniformly as possible to avoid the hot spots during query, so principle
component analysis (PCA) [17] is adopted to select dimension for the main
global index. PCA is a traditional dimension-reduction method. By analyzing
the distribution of data, PCA always picks up top x dimension on which data
are most uniformly distributed. Since the data are randomly distributed across
the servers in the network, we use distributed PCA [15] to get the first k + 1
dimension.

In Bcubek with n, there are n Bcubek−1s, which means that there are n sub-
sidiary global indexes. For each subsidiary global index, we select k dimension
according to the query habit. There are some restrictions on selecting dimension.
First, the dimension of the subsidiary global index cannot totally be contained
in the global index. Second, the dimension of any two subsidiary global indexes
cannot be exactly the same. These two requirements are raised to avoid redun-
dancy among the global indexes. Initially, we list the top n frequently occurred
query patterns. Here, the query pattern is defined as a group of k dimensions
that are usually queried together. Each subsidiary global index is initialized with
one of these query patterns. As more and more queries happen, we use LRU-
algorithm, a caching algorithm, to choose one subsidiary index to be rebuilt.
The subsidiary index that is least recently hit will be required to be rebuilt.
Here a hit means the global index contains some dimension of a given query.
We also assume that only when a query does not hit any global index, including
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one main global index and n subsidiary global indexes, the system will trigger
rebuilding the least recently hit subsidiary index. In practice, to avoid frequent
index rebuilding, the frequence of a query pattern should exceed a threshold in
a time quantum before triggering the rebuilding of indexing space. Otherwise,
no rebuilding will happen.

4.2 Publishing Scheme

As is discussed above, every server builds a local R-tree to accelerate local data
retrieval. To build the global indexes, each server adaptively selects a set of R-
tree nodes, Nt = {N1

t , . . . Nn
t }, from its local R-tree and publishes them into

the global index.
We use the same mapping scheme as in [7]. Since the publishing scheme of

both the main global index and the subsidiary global index is similar, we take
the main global index as an example. The format of the published R-tree node
is (ip,mbr), where ip records the physical address of the server which publishes
the node and mbr gives the range of the R-tree node. For each selected R-tree
node, the center and radius are two criteria used for mapping. The center decides
the position where the R-tree node is mapped, while the radius decides whether
the node is mapped to one server or several servers. A threshold, Rmax, is set
to be compared with the radius. The detailed process of the mapping scheme
is as follows: given an R-tree node, we calculate its center and radius. First,
the node is directly mapped to the server whose potential index range contains
the center. Then the radius is compared with Rmax. If the radius is larger than
Rmax, then the node will also be mapped to the servers whose potential index
range intersects with the R-tree node range.

Fig. 4. Mapping scheme in 2D place

Figure 4 shows an example in 2D space. Suppose that the radius of the
indexed R-tree node N is R3 and Rmax equals R2, then N will only be mapped to
{11}. If we set Rmax to R1, then since R3 is larger than R1, N will be mapped
to servers {11, 12, 21, 22}. In higher-dimensional space, the mapping scheme
works in the same way.
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4.3 Cost Model

In RB-Index, each server chooses a set of nodes from its local R-tree and pub-
lishes them into the global index. [7] raises two properties as the basic require-
ments in selecting the local R-tree node set: index completeness and unique
index. These two criteria guarantee that the selected set of R-tree nodes covers
the whole local data range with the least redundance. Based on these require-
ments, a cost model is introduced here to optimize the index selection further.
We combine the cost model raised in [7,13] and take advantage of both the cost
models.

In the rest of the paper, we use hop number as the metric to evaluate the
routing cost. A hop refers to the trip from one server to its neighbor. Since servers
in Bcube are connected in a quite close physical distance, the communication
delay between any two servers is approximately equal. Thus, using hop number to
evaluate the real routing cost is reasonable. The cost model considers two aspects
to value the cost of publishing a local R-tree node C(N): index maintenance cost
Cm(N) and query process cost Cq(N),

C(N) = Cm(N) + Cq(N) (2)

The maintenance cost refers to the cost of essential node update operations:
split and merge. Once the published node is split or merged, additional routing
cost is caused by republishing the node. Given that the average routing cost
between any server in Bcubek is k + 1, the routing cost of splitting includes
deleting the original node and publishing two new nodes. Similarly, the routing
cost of merging includes deleting two old nodes and publishing a new node. Both
of the two operations cost 3(k+1) approximately. Assume that the probabilities
of splitting and merging for node N are psplit(N) and pmerge(N), we can get
Eq. (3) as follows:

Cm(N) = 3(k + 1)(psplit(N) + pmerge(N)) (3)

Now the problem becomes how to estimate the value of psplit(N) and
pmerge(N). In [7], a two-state markov chain model is applied on each R-tree node
to calculate its psplit(N) and pmerge(N). However, this takes a great amount of
computation. Here, we only use this method to calculate psplit(N) and pmerge(N)
of the leaf node. For non-leaf nodes, we use the method in [13]. Suppose p1(N)
is the probability of insertion in node N and p2(N) is the probability of deletion
in node N . The relationship between p1, p2, psplit and pmerge can be formulated
as:

psplit =
(p2
p1

)
3m
2 − (p2

p1
)m

(p2
p1

)2m − (p2
p1

)m
, pmerge =

(p2
p1

)2m − (p2
p1

)
3m
2

(p2
p1

)2m − (p2
p1

)m
(4)

For any non-leaf node N , suppose its children are c1, c2, . . . , ci, then p1 and
p2 can be calculated by the Eq. (5):

p1(N) =
i∏

j=1

(1 − psplit(cj)), p2(N) =
i∏

j=1

(1 − pmerge(cj)) (5)
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Therefore, once we get psplit(N) and pmerge(N) of leaf nodes, we can get the
update probabilities of the internal node iteratively.

The second cost is query processing cost. We mainly consider false positive.
Due to the overlay between R-tree nodes, it is common for the global index to
guide the query to servers which actually does not contain the needed datum.
Suppose R(N) represents the range of node N and D(N) represents the range of
data in node N , then the probability of false positives pfp can be simply defined
in Eq. (6). And the average routing cost of query processing can be calculated
in Eq. (7).

pfp(N) =
R(N) ∩ D(N)

R(N)
(6)

Cq(N) = (k + 1)pfp(N) (7)

After getting the maintenance cost (Eq. 3) and query processing cost (Eq. 7), we
can get the cost of a node N :

C(N) = (k + 1)(3psplit(N) + 3pmerge(N) + pfp(N)) (8)

5 Query Processing

In this section, we show how the global index can be applied to efficiently process
high-dimensional data queries.

5.1 Point Query

Before we talk about point query, we make some explanations: here, point query
refers to full-dimensional point query, rather than partial-dimension point query,
since partial point query can be regarded as range query, which will be introduced
later. Point query can be processed in either one of the global indexes. Usually it
is processed in the main global index since the dimension selection of the main
global index determines that data are most uniformly distributed in that index
and the main indexing space is better grained with more responsible servers.
Given a point p=(x0, . . . ,xd), the process of point query Q(p) can be divided
into two phases:

In the first phase, we forward the query to server t whose potential index
range contains the point. Then we generate a circle centered at point p with
radius Rmax. All the servers whose potential index range intersects with the
circle should be searched. We take advantage of multi-pathes between servers
in Bcube and forward the query in parallel. We check the main global index
buffered in these servers and get related R-tree nodes whose range contains the
point. In the second phase, according to the result R-tree nodes, we continue
the query on local R-trees in the corresponding physical servers. For point query
processing, suppose the circle covers M servers and the average path length
between any two server is (k + 1), then the routing cost of forwarding the query
in the global index is O((k + 1) ∗ M). Besides, forwarding query to the related
servers for local search brings additional cost. If the overlay of R-tree is properly
controlled, this process will have a tiny cost.
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5.2 Range Query

Suppose the dimension of the stored data is d. The range query can be either the
d-dimension range query or partial-specific range query. We denote a range query
as Q(range), where range=([ld1 , ud1 ] . . . [ldt

, udt
]), {d1, d2 . . . dt} is a subset of

{1 . . . d}. The range query processing can be divided into three phases.
In the first phase, we choose one global index which matches the query most.

Here, matching means having the most number of the same dimensions with
the query dimension. We prefer to choose the global index which guides query
to lest number of servers. If the dimension of the range query is not indexed,
then we will check whether this query happens frequently in the past time. If
so, one subsidiary global index which is the least recently used will be rebuilt.
Otherwise, we will omit the following phases and directly broadcast the range
query to all the servers and query on local R-trees. In the second phase, first, we
send the query to servers whose potential index range intersects with the query
range. Then due to the publishing scheme, the query should also be forwarded
to some other servers to get the full result. We calculate the center of the range
query and its radius. In the global index space, if only part of dimension of the
query is indexed, then the center maybe a line or a plain. The server t is searched
if and only if |t.pir.center−range.center| < radius+Rmax. The buffered R-tree
nodes in these servers will be searched. In the third phase, according to result
R-tree nodes, the query is forwarded to the related physical servers to continue
searching on their local R-trees.

The cost of range query processing is related to the radius of the range. As
we can see from the process, if the radius is larger, more servers will be searched
to get the buffered R-tree nodes. The worst case is broadcasting the query to all
the servers. However, this case will not always happen. Thus, compared with the
cost of broadcasting the query to all servers, the cost of range query processing
with the help of RB-Index is reduced significantly.

5.3 KNN Query

We denote the KNN query Q(p,K), which requires the K nearest neighbors for
the point p. Again, we choose the main global index. The reason is the same
as point query. We first generate a circle C centered at p with a given radius
Rinit. Rinit is set according to the data distribution and the value K. During
the process of the query, if the result of range query Q(C) contains K nearest
data, then the KNN query complete. Otherwise, we extend the circle radius with
δ until the result of range query returns enough nearest data. The cost of KNN
query is related to the value K. With higher K value, bigger range needs to be
searched, which reduces the query efficiency.

6 Performance Evaluation

In this section, we simulate a Bcube2 with n = 4 and evaluate the performance
of RB-Index on it. The data are generated and distributed randomly across the
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Fig. 5. Average number of global index
in one server

Fig. 6. Point query

servers in the Bcube. We generate two different datasets to evaluate the perfor-
mance of RB-Index. In the uniform dataset, we generate 320000 to 1280000 data.
These data have 11 attributes and values of attributes are uniformly distributed
between (0, 1). In the nonuniform dataset, data are generated following the 80/20
rule, which means 80 percentage of data are concentrated in 20 percentage of the
space. For both of the datasets, we disseminate data to servers and keep every
server roughly maintain the same number of data. A Bcube2 with n = 4 con-
tains 64 servers and each server builds a local R-tree indexing local data. For
each internal R-tree node, the maximum number of entries is set to 10. Initially,
we choose the last but one level from R-trees to publish into global indexes, since
these nodes are not frequently updated and have the modest false positive.

In the following simulation, we calculate the number of hops to evaluate the
query performance of RB-Index. As is mentioned, in MDC the communication
delay between any two servers is approximately equal. Thus, using hop number
to evaluate the real routing cost is reasonable. We mainly focus on point query
and range query since in RB-Index, KNN query can be achieved by several
range queries. We also build the RT-CAN [7] in Bcube2 as a reference object.
Due to the algorithm of point query, the point query processing of RT-CAN and
RB-Index is actually same, so we only compare the range query performance of
RT-CAN with RB-Index.

Before evaluating query performance, we first estimate the space cost of the
global index under different data volume. We record the number of buffered R-
tree nodes in each server and calculate the average number of buffered R-tree
nodes in a server. The result is shown in Fig. 5. As the data volume increases,
the average number of buffered R-tree nodes increases as well. In addition, the
nonuniform dataset causes slightly more published R-tree nodes than the uniform
data. This may be resulted from the property of R-tree and the publishing
scheme. Although holding two portions of different global indexes in each server
introduces more space cost, we still think it is a tolerant cost and the gained
efficiency overweighs the space cost.

For the point query, to evaluate the performance, we adopt the single-path
strategy, which means when we get the result R-tree nodes through the global
index, we continue local searching from one server to another, rather than in
parallel. Once we find the data, the query terminated. For the range query, we
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Fig. 7. Range query (uniform dataset) Fig. 8. Range query (nonuniform
dataset)

limit the size of query range. Each time the search range will cover approxi-
mately 10 percentage of the range in each dimension. We respectively conduct
1000 randomly generated queries and take the average result. Figure 6 shows the
average routing cost of point query. The result shows that even with increasing
data volume, the routing cost still maintains stable. Figures 7 and 8 show the
average routing cost of range query. Since RT-CAN only indexes three dimension
of data, the average routing cost is almost the cost of broadcasting query in the
network. In contrast, RB-Index improves the performance by more than 50 % in
both uniform dataset and nonuniform dataset.

Fig. 9. Visiting frequence

Finally, we record the visiting frequence of each server in the network. As
in real systems, both the point query and range query are processed, we con-
duct 2000 random queries with both point query and range query. The result is
showed in Fig. 9. Under uniform dataset, the visiting frequence of each server is
approximately same, while some servers mapped in the center of the indexing
space are a bit more frequently visited since they possess more published R-tree
nodes. Under nonuniform dataset, the overall visiting frequence decreases and
due to the skewed distribution, some servers are particularly frequent-visited.
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7 Conclusion

In this paper, we propose RB-Index, a multi-dimensional indexing scheme for
Modular Data Center with Bcube topology. RB-Index adopts the two-layer
indexing scheme, of which the global index is built upon local R-tree and is
distributed over servers. Based on the characteristics of Bcube, we set up sev-
eral indexing spaces to build several global indexes. We select the dimension of
these indexing spaces adaptively to meet query habits. As a result, theoretically
RB-Index can support any-dimensional data indexing. We propose the index
construction rule and query algorithms to guarantee efficient data management
in the network. In the evaluation, we simulate a 64-node Bcube and compare the
query performance of RB-Index with RT-CAN, a most related previous work.
Although building several global indexes increases space cost, the result verifies
the query efficiency of RB-Index.
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